Search results for "FIRST-PRINCIPLES CALCULATIONS"

showing 10 items of 10 documents

Beyond ideal two-dimensional metals: Edges, vacancies, and polarizabilities

2018

Recent experimental discoveries of graphene-stabilized patches of two-dimensional (2D) metals have motivated also their computational studies. However, so far the studies have been restricted to ideal and infinite 2D metallic monolayers, which is insufficient because in reality the properties of such metallic patches are governed by microstructures pervaded by edges, defects, and several types of perturbations. Here we use density-functional theory to calculate edge and vacancy formation energies of hexagonal and square lattices of 45 elemental 2D metals. We find that the edge and vacancy formation energies are strongly correlated and decrease with increasing Wigner-Seitz radii, analogously…

Work (thermodynamics)Materials scienceCoordination numberFOS: Physical sciences02 engineering and technologyEdge (geometry)010402 general chemistry01 natural sciencesSquare (algebra)polarisaatioMetalnanorakenteetnanocrystalsVacancy defectMesoscale and Nanoscale Physics (cond-mat.mes-hall)charge polarizationcrystal defectspoint defectsIdeal (ring theory)Condensed matter physicsta114Condensed Matter - Mesoscale and Nanoscale Physicsline defectsviat021001 nanoscience & nanotechnologyvacancies0104 chemical sciencesBond lengthvisual_artfirst-principles calculationsvisual_art.visual_art_medium0210 nano-technology
researchProduct

Excitons in few-layer hexagonal boron nitride: Davydov splitting and surface localization

2018

Hexagonal boron nitride (hBN) has been attracting great attention because of its strong excitonic effects. Taking into account few-layer systems, we investigate theoretically the effects of the number of layers on quasiparticle energies, absorption spectra, and excitonic states, placing particular focus on the Davydov splitting of the lowest bound excitons. We describe how the inter-layer interaction as well as the variation in electronic screening as a function of layer number $N$ affects the electronic and optical properties. Using both \textit{ab initio} simulations and a tight-binding model for an effective Hamiltonian describing the excitons, we characterize in detail the symmetry of t…

ab-initio many-body perturbation theoryAb initio02 engineering and technology01 natural sciences[SPI.MAT]Engineering Sciences [physics]/MaterialsTight bindingtight-bindingGeneral Materials ScienceOPTICAL ABSORPTIONWave functionmedia_commonPhysicsCondensed Matter - Materials ScienceCondensed matter physics021001 nanoscience & nanotechnologyCondensed Matter PhysicsCondensed Matter::Mesoscopic Systems and Quantum Hall Effect: Physique [G04] [Physique chimie mathématiques & sciences de la terre]Mechanics of MaterialsMATERIAUX 2DTIGHT-BINDINGQuasiparticlesymbols0210 nano-technologyHamiltonian (quantum mechanics)excitonsAbsorption spectroscopyExcitonmedia_common.quotation_subject: Physics [G04] [Physical chemical mathematical & earth Sciences]HEXAGONAL BORON NITRIDEFOS: Physical sciencesEXCITONAsymmetryBNsymbols.namesakeCondensed Matter::Materials ScienceFIRST-PRINCIPLES CALCULATIONS0103 physical sciencesMesoscale and Nanoscale Physics (cond-mat.mes-hall)hexagonal boron nitride010306 general physicsCondensed Matter::Quantum GasesCondensed Matter - Mesoscale and Nanoscale PhysicsCondensed Matter::OtherEXCITONSMechanical EngineeringMaterials Science (cond-mat.mtrl-sci)Davydov splittingGeneral Chemistry
researchProduct

Density functional theory description of random Cu-Au alloys

2019

Density functional alloy theory is used to accurately describe the three core effects controlling the thermodynamics of random Cu-Au alloys. These three core effects are exchange correlation (XC), ...

Materials scienceta114tiheysfunktionaaliteoriaAlloyThermodynamics02 engineering and technologyengineering.materialelectronic structure021001 nanoscience & nanotechnology01 natural sciencesCore (optical fiber)Condensed Matter::Materials Sciencealloysfirst-principles calculations0103 physical sciencesengineeringDensity functional theorymetalliseokset010306 general physics0210 nano-technologyta116density functional theoryPhysical Review B
researchProduct

Phonon Driven Floquet Matter.

2018

The effect of electron–phonon coupling in materials can be interpreted as a dressing of the electronic structure by the lattice vibration, leading to vibrational replicas and hybridization of electronic states. In solids, a resonantly excited coherent phonon leads to a periodic oscillation of the atomic lattice in a crystal structure bringing the material into a nonequilibrium electronic configuration. Periodically oscillating quantum systems can be understood in terms of Floquet theory, which has a long tradition in the study of semiclassical light-matter interaction. Here, we show that the concepts of Floquet analysis can be applied to coherent lattice vibrations. This coupling leads to p…

Floquet theoryFloquet theoryPhononphotoelectron spectroscopynonequilibrium bandstructureFOS: Physical sciencesSemiclassical physicsBioengineeringAngle-resolved photoemission spectroscopy02 engineering and technologyElectronic structureelectron?phonon coupling01 natural sciencesSettore FIS/03 - Fisica Della MateriaFirst-principles calculations0103 physical sciencesGeneral Materials Science010306 general physicsElectronic band structurePhysicsCondensed Matter - Materials Sciencepumpprobe spectroscopyCondensed matter physicsMechanical EngineeringMaterials Science (cond-mat.mtrl-sci)General Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsExcited stateElectron configuration0210 nano-technologyNano letters
researchProduct

Effect of H Adsorption on the Magnetic Properties of an Fe Island on a W(110) Surface

2019

<p>Low-dimensional materials, such as ultrathin films, nanoislands and wires, are actively being researched due to their interesting magnetic properties and possible technological applications for example in high density data storage. Results of calculations of an Fe nanoisland on a W(110) support are presented here with particular focus on the effect of hydrogen adsorption on its magnetic properties. This is an important consideration since hydrogen is present even under ultra-high vacuum conditions. The calculations are based on density functional theory within the generalized gradient approximation. The adsorption of H atoms is found to strongly decrease the magnetic moment of the …

Surface (mathematics)magneettiset ominaisuudetMaterials scienceHydrogenMagnetismchemistry.chemical_elementHigh density02 engineering and technology01 natural sciencesHydrogen adsorptionGeneralized gradientCondensed Matter::Materials ScienceAdsorptionnanorakenteet0103 physical sciences010306 general physicsMagnetic momentCondensed matter physics021001 nanoscience & nanotechnologyelectronic structurechemistryChemical physicsfirst-principles calculationsmagnetismDensity functional theory0210 nano-technology
researchProduct

Group 10 Metal Benzene-1,2-dithiolate Derivatives in the Synthesis of Coordination Polymers Containing Potassium Countercations

2017

This document is the Accepted Manuscript version of a Published Work that appeared in final form in Inorganic Chemistry, copyright © American Chemical Society after peer review and technical editing by the publisher. To access the final edited and published work see https://pubs.acs.org/doi/abs/10.1021/acs.inorgchem.7b01775

Metal saltsCoordination polymerPotassiumInorganic chemistrychemistry.chemical_element010402 general chemistry01 natural sciencesInorganic ChemistryMetalchemistry.chemical_compoundFirst-principles calculationsGroup (periodic table)Physical and Theoretical ChemistryBenzenechemistry.chemical_classification010405 organic chemistryChemistryPolymerQuímica0104 chemical sciencesCoordination polymersCrystallographyMetal-dithiolene polymersvisual_artvisual_art.visual_art_mediumCoordination compoundsPlatinum
researchProduct

Monitoring Electron-Photon Dressing in WSe 2

2016

Optical pumping of solids creates a non-equilibrium electronic structure where electrons and photons combine to form quasiparticles of dressed electronic states. The resulting shift of electronic levels is known as the optical Stark effect, visible as a red shift in the optical spectrum. Here we show that in a pump-probe setup we can uniquely define a non-equilibrium quasiparticle bandstructure that can be directly measurable with photoelectron spectroscopy. The dynamical photon-dressing (and undressing) of the many-body electronic states can be monitored by pump-probe time and angular resolved photoelectron spectroscopy (tr-ARPES) as the photon-dressed bandstructure evolves in time dependi…

Floquet theoryFloquet theoryPhotonphotoelectron spectroscopynonequilibrium bandstructurePhysics::OpticsBioengineering02 engineering and technologyElectronElectronic structure01 natural sciencesSettore FIS/03 - Fisica Della MateriaOptical pumpingsymbols.namesakeFirst-principles calculations0103 physical sciencesGeneral Materials Science010306 general physicsChemistryMechanical Engineeringpump-probe spectroscopyGeneral Chemistry021001 nanoscience & nanotechnologyCondensed Matter PhysicsStark effectQuasiparticlesymbolsCondensed Matter::Strongly Correlated ElectronsAtomic physics0210 nano-technologyVisible spectrumNano Letters
researchProduct

Density functional theory description of random Cu-Au alloys

2019

Density functional alloy theory is used to accurately describe the three core effects controlling the thermodynamics of random Cu-Au alloys. These three core effects are exchange correlation (XC), local lattice relaxations (LLRs), and short-range order (SRO). Within the real-space grid-based projector augmented-wave (GPAW) method based on density functional theory (DFT), we adopt the quasinonuniform XC approximation (QNA), and take into account the LLR and the SRO effects. Our approach allows us to study the importance of all three core effects in a unified way within one DFT code. The results demonstrate the importance of the LLR term and show that going from the classical gradient level a…

Copper alloysfirst-principles calculationstiheysfunktionaaliteoriaDensity functional theoryThermodynamicsmetalliseoksetBinary alloyselectronic structureGold alloysLunar surface analysis
researchProduct

Mechanism of Antibacterial Activity via Morphology Change of α-AgVO3: Theoretical and Experimental Insights

2017

The electronic configuration, morphology, optical features, and antibacterial activity of metastable α-AgVO3 crystals have been discussed by a conciliation and association of the results acquired by experimental procedures and first-principles calculations. The α-AgVO3 powders were synthesized using a coprecipitation method at 10, 20, and 30 °C. By using a Wulff construction for all relevant low-index surfaces [(100), (010), (001), (110), (011), (101), and (111)], the fine-tuning of the desired morphologies can be achieved by controlling the values of the surface energies, thereby lending a microscopic understanding to the experimental results. The as-synthesized α-AgVO3 crystals display a …

Wulff constructionMorphology (linguistics)Materials scienceCoprecipitationmorphologies02 engineering and technology010402 general chemistry021001 nanoscience & nanotechnology01 natural sciencesα-AgVO30104 chemical sciencesCrystallographyantibacterial activityChemical engineeringMechanism (philosophy)first-principles calculationsMetastabilityphotoluminescenceGeneral Materials ScienceElectron configurationWulff construction0210 nano-technologyAntibacterial activityACS Applied Materials & Interfaces
researchProduct

CO2 and CH2 Adsorption on Copper-Decorated Graphene: Predictions from First Principle Calculations

2022

Calculations were performed using Latvian Super Cluster (LASC), located in Center of Excellence at Institute of Solid State Physics, the University of Latvia, which is supported by European Union Horizon2020 Framework Programme H2020-WIDESPREAD-01-2016-2017-TeamingPhase2 under Grant Agreement No. 739508, project CAMART2. The authors would like to express their gratitude for funding from the European Union’s Horizon 2020 research and innovation programme under grant agreement No 768789 (CO2EXIDE project). In the last stage of investigation and during the preparation of the publication, the authors were assisted by the postdoc D.B. with his own funding from project No. 1.1.1.2/VIAA/l/16/147 (…

Inorganic ChemistryFirst-principles calculationsGeneral Chemical EngineeringCO2 electroreductionGeneral Materials Science:NATURAL SCIENCES::Physics [Research Subject Categories]AdsorptionNanodecorationCondensed Matter Physicsgraphene; nanodecoration; first-principles calculations; adsorption; CO<sub>2</sub> electroreductionGraphen
researchProduct